IELTS길라잡이IELTS교재분석IELTS학원정보IELTS공부전략IELTS FAQIELTS정보게시판IELTS자료게시판IELTS비법노트
IELTS 리스닝풀기IELTS 리딩풀기IELTS 보카외우기라이팅게시판스피킹게시판IELTS Q&AIELTS자유게시판IELTS 시험접수

아이엘츠 독해 연습문제 3

요술램프 | 조회 5225 | 추천 12
  • 2013.08.30
  • 글꼴
  • 확대
  • 축소

Suns fickle heart may leave us cold

 

Sun's fickle heart may leave us cold

  □ 25 January 2007

  □ From New Scientist Print Edition.

  □ Stuart Clark

  1 There's a dimmer switch inside the sun that causes its brightness to rise and fall on timescales of around 100,000 years - exactly the same period as between ice ages on Earth. So says a physicist who has created a computer model of our star's core.

  2 Robert Ehrlich of George Mason University in Fairfax, Virginia, modelled the effect of temperature fluctuations in the sun's interior. According to the standard view, the temperature of the sun's core is held constant by the opposing pressures of gravity and nuclear fusion. However, Ehrlich believed that slight variations should be possible.

  3 He took as his starting point the work of Attila Grandpierre of the Konkoly Observatory of the Hungarian Academy of Sciences. In 2005, Grandpierre and a collaborator, Gábor ágoston, calculated that magnetic fields in the sun's core could produce small instabilities in the solar plasma. These instabilities would induce localised oscillations in temperature.

  4 Ehrlich's model shows that whilst most of these oscillations cancel each other out, some reinforce one another and become long-lived temperature variations. The favoured frequencies allow the sun's core temperature to oscillate around its average temperature of 13.6 million kelvin in cycles lasting either 100,000 or 41,000 years. Ehrlich says that random interactions within the sun's magnetic field could flip the fluctuations from one cycle length to the other.

  5 These two timescales are instantly recognisable to anyone familiar with Earth's ice ages: for the past million years, ice ages have occurred roughly every 100,000 years. Before that, they occurred roughly every 41,000 years.

  6 Most scientists believe that the ice ages are the result of subtle changes in Earth's orbit, known as the Milankovitch cycles. One such cycle describes the way Earth's orbit gradually changes shape from a circle to a slight ellipse and back again roughly every 100,000 years. The theory says this alters the amount of solar radiation that Earth receives, triggering the ice ages. However, a persistent problem with this theory has been its inability to explain why the ice ages changed frequency a million years ago.

  7 "In Milankovitch, there is certainly no good idea why the frequency should change from one to another," says Neil Edwards, a climatologist at the Open University in Milton Keynes, UK. Nor is the transition problem the only one the Milankovitch theory faces. Ehrlich and other critics claim that the temperature variations caused by Milankovitch cycles are simply not big enough to drive ice ages.

  8 However, Edwards believes the small changes in solar heating produced by Milankovitch cycles are then amplified by feedback mechanisms on Earth. For example, if sea ice begins to form because of a slight cooling, carbon dioxide that would otherwise have found its way into the atmosphere as part of the carbon cycle is locked into the ice. That weakens the greenhouse effect and Earth grows even colder.

  9 According to Edwards, there is no lack of such mechanisms. "If you add their effects together, there is more than enough feedback to make Milankovitch work," he says. "The problem now is identifying which mechanisms are at work." This is why scientists like Edwards are not yet ready to give up on the current theory. "Milankovitch cycles give us ice ages roughly when we observe them to happen. We can calculate where we are in the cycle and compare it with observation," he says. "I can't see any way of testing [Ehrlich's] idea to see where we are in the temperature oscillation."

  10 Ehrlich concedes this. "If there is a way to test this theory on the sun, I can't think of one that is practical," he says. That's because variation over 41,000 to 100,000 years is too gradual to be observed. However, there may be a way to test it in other stars: red dwarfs. Their cores are much smaller than that of the sun, and so Ehrlich believes that the oscillation periods could be short enough to be observed. He has yet to calculate the precise period or the extent of variation in brightness to be expected.

  11 Nigel Weiss, a solar physicist at the University of Cambridge, is far from convinced. He describes Ehrlich's claims as "utterly implausible". Ehrlich counters that Weiss's opinion is based on the standard solar model, which fails to take into account the magnetic instabilities that cause the temperature fluctuations.

  (716 words)

Questions 1-4

  Complete each of the following statements with One or Two names of the scientists from the box below.

  Write the appropriate letters A-E in boxes 1-4 on your answer sheet.

雅思阅读练习:Suns fickle heart may leave us cold

  1. ...claims there抯 a dimmer switch inside the sun that causes its brightness to rise and fall in periods as long as those between ice ages on Earth.

  2. ...calculated that the internal solar magnetic fields could produce instabilities in the solar plasma.

  3. ...holds that Milankovitch cycles can induce changes in solar heating on Earth and the changes are amplified on Earth.

  4. ...doesn't believe in Ehrlich's viewpoints at all.

  Questions 5-9

  Do the following statements agree with the information given in the reading passage?

  In boxes 5-9 on your answer sheet write

  TRUE if the statement is true according to the passage

  FALSE if the statement is false according to the passage

  NOT GIVEN if the information is not given in the passage

  5. The ice ages changed frequency from 100,000 to 41,000 years a million years ago.

  6. The sole problem that the Milankovitch theory can not solve is to explain why the ice age frequency should shift from one to another.

  7. Carbon dioxide can be locked artificially into sea ice to eliminate the greenhouse effect.

  8. Some scientists are not ready to give up the Milankovitch theory though they haven't figured out which mechanisms amplify the changes in solar heating.

  9. Both Edwards and Ehrlich believe that there is no practical way to test when the solar temperature oscillation begins and when ends.

  Questions 10-14

  Complete the notes below.

  Choose one suitable word from the Reading Passage above for each answer.

  Write your answers in boxes 10-14 on your answer sheet.

  The standard view assumes that the opposing pressures of gravity and nuclear fusions hold the temperature ...10...in the sun's interior, but the slight changes in the earth's ...11... alter the temperature on the earth and cause ice ages every 100,000 years. A British scientist, however, challenges this view by claiming that the internal solar magnetic ...12... can induce the temperature oscillations in the sun's interior. The sun's core temperature oscillates around its average temperature in ...13... lasting either 100,000 or 41,000 years. And the ...14... interactions within the sun's magnetic field could flip the fluctuations from one cycle length to the other, which explains why the ice ages changed frequency a million years ago.

 

 

 

Answer keys and explanations:

  1. E

  See the sentences in paragraph 1(There's a dimmer switch inside the sun that causes its brightness to rise and fall on timescales of around 100,000 years - exactly the same period as between ice ages on Earth. So says a physicist who has created a computer model of our star's core.) and para.2 (Robert Ehrlich of George Mason University in Fairfax, Virginia, modelled the effect of temperature fluctuations in the sun's interior.)

  2. A B

  See para.3: ?i style='mso-bidi-font-style: normal'>Grandpierre and a collaborator, Gábor ágoston, calculated that magnetic fields in the sun's core could produce small instabilities in the solar plasma.

  3. C

  See para.8: Edwards believes the small changes in solar heating produced by Milankovitch cycles are then amplified by feedback mechanisms on Earth.

  4. D

  See para.11: Nigel Weiss, a solar physicist at the University of Cambridge, is far from convinced. He describes Ehrlich's claims as "utterly implausible".

  5. False

  See para.5: for the past million years, ice ages have occurred roughly every 100,000 years. Before that, they occurred roughly every 41,000 years.

  6. False

  See para.7: "In Milankovitch, there is certainly no good idea why the frequency should change from one to another," ... Nor is the transition problem the only one the Milankovitch theory faces.

  7. Not Given

  See para.8: if sea ice begins to form because of a slight cooling, carbon dioxide?is locked into the ice. That weakens the greenhouse effect. (The passage doesn抰 mention anything about locking Co2 into ice artificially.)

  8. True

  See para.9: there is no lack of such mechanisms. "If you add their effects together, there is more than enough feedback to make Milankovitch work,"?"The problem now is identifying which mechanisms are at work." This is why scientists like Edwards are not yet ready to give up on the current theory.

  9. True

  See the sentences in para.9 (According to Edwards, 卙e says. "I can't see any way of testing [Ehrlich's] idea to see where we are in the temperature oscillation.") and para.10 (Ehrlich concedes this. "If there is a way to test this theory on the sun, I can't think of one that is practical).

  10. constant

  See para.2: According to the standard view, the temperature of the sun's core is held constant by the opposing pressures of gravity and nuclear fusion.

  11. orbit

  See para.6: Most scientists believe that the ice ages are the result of subtle changes in Earth's orbit, 匛arth's orbit gradually changes shape from a circle to a slight ellipse and back again roughly every 100,000 years.

  12. instabilities

  See para.3: ?i style='mso-bidi-font-style:normal'>magnetic fields in the sun's core could produce small instabilities in the solar plasma. These instabilities would induce localised oscillations in temperature.

  13. cycles

  See para.4: …allow the sun's core temperature to oscillate around its average temperature of 13.6 million kelvin in cycles lasting either 100,000 or 41,000 years.

  14. random

  See para.4: Ehrlich says that random interactions within the sun's magnetic field could flip the fluctuations from one cycle length to the other.

글쓰기 답변 수정 삭제 목록으로 퍼가기▼
  • 페이스북으로 보내기
  • 트위터로 보내기
  • URL 복사

IELTS자료게시판
번호 제목 글쓴이 조회수 날짜
590 [라이팅] 아이엘츠 라이팅 연습문제 1 [4] 요술램프 6918 2013.08.31
>> [리딩] 아이엘츠 독해 연습문제 3 사진 [2] 요술램프 5226 2013.08.30
588 [리딩] 아이엘츠 독해 연습문제 2 [2] 요술램프 17919 2013.08.30
587 [리딩] 아이엘츠 독해 연습문제 4 [2] 요술램프 4115 2013.08.30
586 [리딩] 아이엘츠 독해 연습문제 1 [3] 요술램프 5297 2013.08.30
585 [라이팅] [Writing] General Task 1- (2) [4] 빨간망토 5017 2013.06.24
584 [라이팅] [Writing] General Task 1 [4] 빨간망토 4465 2013.06.24
583 [라이팅] [라이팅] IELTS WRITING ACADEMIC 사진 [6] 빨간망토 5985 2013.06.13
582 [보카] [VOCA] Topic: Writing a letter [4] 빨간망토 4369 2013.06.03
581 [보카] [VOCA] 오늘은 단어자료 뿌립니다! [4] 빨간망토 8268 2013.06.03
580 [라이팅] [Academic] Writing Task 1 사진 [8] 빨간망토 4681 2013.05.27
579 [라이팅] [Academic/General] Writing Task 2 [11] 빨간망토 4533 2013.05.27
578 [스피킹] Speaking Model answers 사진 [9] 으아 5511 2013.05.26
577 [라이팅] [General] Writing Sample Essay [17] 빨간망토 10786 2013.05.13
576 [라이팅] [Academic] Writing Sample Essay 사진 [16] 빨간망토 6127 2013.05.13
575 [라이팅] [Academic] Writing Sample Essay Task 1 사진 [12] 빨간망토 4714 2013.05.10
574 [라이팅] [Academic] Writing Sample Task 1 사진 [11] 빨간망토 4903 2013.05.10
573 [라이팅] Academic Writing 사진 [18] 빨간망토 3875 2013.05.06
572 [스피킹] [스피킹] Part1 & Part 2 문제 모음 사진 [18] 빨간망토 6387 2013.05.06
571 [라이팅] IELTS Writing Sample Essay [14] 빨간망토 6253 2013.04.29